
To appear at IJCAI-99 1

Temporal Planning with Mutual Exclusion Reasoning�

David E. Smith
NASA Ames Research Center

Mail Stop 269-2
Mo�ett Field, CA 94035 USA
de2smith@ptolemy.arc.nasa.gov

Daniel S. Weld
Department of Computer Science & Engineering

University of Washington, Box 352350
Seattle, WA 98195{2350 USA

weld@cs.washington.edu

Abstract

Many planning domains require a richer no-
tion of time in which actions can overlap and
have di�erent durations. The key to fast per-
formance in classical planners (e.g., Graphplan,
ipp, and Blackbox) has been the use of a dis-
junctive representation with powerful mutual
exclusion reasoning. This paper presents tgp,
a new algorithm for temporal planning. tgp

operates by incrementally expanding a compact
planning graph representation that handles ac-
tions of di�ering duration. The key to tgp

performance is tight mutual exclusion reason-
ing which is based on an expressive language
for bounding mutexes and includes mutexes be-
tween actions and propositions. Our experi-
ments demonstrate that mutual exclusion rea-
soning remains valuable in a rich temporal set-
ting.

1 Introduction
For many real world planning domains, the classical
strips model of action is inadequate | actions can be
simultaneous, can have di�erent durations, and can re-
quire metric resources. These characteristics are partic-
ularly prevelant in many NASA planning applications.
For example, both spacecraft (such as DS1) and plan-
etary rovers (such as Sojourner) use heaters to warm
up various components, and these warming actions may
span several other actions or experiments. Likewise,
data compression and telemetry may overlap with other
actions, and these actions may have wildly di�erent du-
rations (from milliseconds to hours).

While previous work on temporal planning has yielded
some success [Vere, 1983; Pelavin & Allen, 1987; Pen-
berthy & Weld, 1994; Muscettola, 1994], past systems

�We thank Corin Anderon, Keith Golden, Zack Ives, Ari
K. Jonsson, Rao Kambhampati, Pandu Nayak and the anony-
mous reviewers for helpful comments and discussion. This
research was funded in part by O�ce of Naval Research
Grant N00014-98-1-0147, and by National Science Founda-
tion Grants IRI-9303461 and IIS-9872128.

either scaled poorly or required humans to set up elabo-
rate temporal constraint networks and specify guidance
heuristics. The use of reachability analysis and mutual
exclusion reasoning in Graphplan [Blum & Furst, 1995]

and descendants such as ipp [Koehler et al., 1997] has
yielded spectacular speedup in classical planning, so it is
natural to wonder if similar reasoning is extensible to the
problem of temporal planning. This paper demonstrates
that this extension is indeed possible in the generalized
Graphplan context. In particular, we:

� Generalize the planning graph representation to
deal with arbitrary time instead of graph levels. To
accomplish this, we change to a much more compact
cyclic graph, where actions and propositions appear
only once in the graph annotated by their earliest
possible start times.

� Extend mutual exclusion reasoning to work for ac-
tions that can have di�erent durations and can over-
lap in arbitrary ways. This requires 1) a more
general notion of conditional mutex involving time
bounds, and 2) mutex relationships between actions
and propositions.

� Describe the Temporal Graphplan (tgp) algorithm,
which operates incrementally on the generalized
planning graph introduced above, and employs ex-
tended mutual exclusion reasoning on that graph.

� Present empirical evidence that 1) these generaliza-
tions do not signi�cantly degrade performance, and
2) mutual exclusion remains valuable (and perhaps
vital) in a richer temporal setting.

2 Graphplan Review
We briey summarize the Graphplan algorithm [Blum &
Furst, 1997], because it forms the basis for tgp. Graph-
plan solves strips planning problems in a determinis-
tic, fully speci�ed world. Both the preconditions and
e�ects of its action schemata are conjunctions of liter-
als (i.e., denoting the add and delete lists). Graphplan
alternates between two phases: graph expansion and so-
lution extraction. The graph expansion phase extends a
planning graph until it has achieved a necessary (but in-

su�cient) condition for plan existence. The solution ex-
traction phase then performs a backward-chaining search
for an actual solution; if no solution is found, the cycle
repeats.
The planning graph contains alternating levels of

proposition nodes (corresponding to ground literals) and
action nodes. The zeroth level consists solely of the
propositions that are true in the initial state of the plan-
ning problem. Nodes in an action level correspond to
action instances; there is one such node for each action
instance whose preconditions are present (and are mu-
tually consistent) at the previous proposition level. Di-
rected edges connect proposition nodes to subsequent
action nodes whose preconditions reference those propo-
sitions. Similarly, directed edges connect action nodes
to subsequent propositions made true by the action's ef-
fects. Persistence actions function like frame axioms:
each proposition at a level is linked to its persistence
action at the next level, and the action connects to the
same proposition at the next level. Graphplan de�nes
a binary mutual exclusion relation (\mutex") between
nodes in the same level. For example, two action in-
stances are mutex if one action deletes a precondition or
e�ect of another or the actions have preconditions that
are mutually exclusive at the previous level. Two propo-
sitions are mutex if all ways of achieving the propositions
(i.e., actions at the previous level) are pairwise mutex.
Suppose that Graphplan has extended the planning

graph to a level in which all goal propositions are present
and none are pairwise mutex. Graphplan now searches
for a solution plan by considering each goal conjunct
in turn. For each such proposition, Graphplan chooses
(backtrack point) an action a at the previous level that
achieves the goal. If a is consistent (nonmutex) with
all actions that have been chosen so far at this level,
then Graphplan proceeds to the next goal, otherwise if
no such choice is available Graphplan backtracks. After
Graphplan has found a consistent set of actions it recur-
sively tries to �nd a plan for the actions' preconditions
at the previous proposition level. The base case for the
recursion is level zero | if the propositions are present
in the initial conditions, then Graphplan has found a so-
lution. Otherwise, if backtracking fails, then Graphplan
extends the planning graph with an additional action
and proposition level and tries again.

3 The Temporal Planning Graph
When talking about temporal actions, it is important to
specify a clear semantics. tgp adopts a simple extension
of the strips action language that allows each action to
have a nonnegative start time, s, and a positive, real-
valued duration, d. We adopt a conservative model of
action in which: 1) all preconditions must hold at the
start, s, of the action, 2) preconditions not a�ected by
the action itself must hold throughout execution, [s; s+
d], and 3) e�ects are unde�ned during execution and only
guaranteed to hold at the �nal time point s + d. This
means that two actions cannot overlap in any way if an

e�ect or precondition of one is the negation of an e�ect
or precondition of the other.
One can achieve a more exible representation of the

planning graph (and at the same time avoid duplicated
work during plan expansion) by exploiting the following
observations:

� Propositions and actions are monotonically increas-
ing: if proposition P (or action A) is present at one
level it will appear at all subsequent proposition (ac-
tion) levels.

� Mutexes are monotonically decreasing: if mutex M
between propositions P and Q is present at one level
then M is present at all previous proposition levels
in which both P and Q appear. Mutexes between
action instances behave similarly.

� Nogoods are monotonically decreasing: If subgoals
P , Q, and R are unachievable at a level then they
are unachievable at all previous proposition levels.

These observations show that one can dispense with
a multi-level planning graph altogether. Instead, all one
needs is a graph with action and proposition nodes. Arcs
from propositions to actions denote the precondition re-
lation and arcs from actions to propositions encode ef-
fects. Action, proposition, mutex, and nogood struc-
tures are all annotated with a numeric label �eld; for
proposition and action nodes this number denotes the
�rst planning graph level at which the proposition (or
action) appears. For mutex or nogood nodes, the label
marks the last level at which the relation holds.
Note that storing a single node in the graph per ac-

tion does not limit the planner to a single instance of the
action in a plan. Solution extraction will search through
the graph, adding action instances into the plan. Since
this backward-chaining search may traverse cycles, mul-
tiple instances of an action may be added into a plan.
Indeed, this compact encoding scheme has three advan-
tages:

1. The space costs of the expansion phase are vastly
decreased, because information is not duplicated be-
tween levels.

2. The speed of the expansion phase is increased, be-
cause it is possible to update the graph in an in-
cremental fashion. We elaborate on this point in
Section 5.

3. Most important, when using this representation,
there is no longer any need to have actions take unit
time. Instead, labels can be real numbers denoting
start times instead of integers marking a planning-
graph level. While this idea is conceptually simple,
it hides a surprising number of subtleties, which we
elaborate upon in subsequent sections.

As an example, consider the simple domain shown in
Figure 1. Actions A and B have no preconditions, and
produce P and Q respectively. Since action C requires
both P and Q, it can't start executing until time 2 and
so the earliest R can be produced is time 5.

A eff: P
 dur: 1
B eff: Q
 dur: 2
C pre: P,Q
 eff: R
 dur: 3

A[0

B[0

C[2

P[1

Q[2

R[5

a.) Action Definitions b.) Planning Graph

Figure 1: The planning graph for a simple domain of
three actions. Arcs encode precondition and e�ect re-
lations. Node subscripts, which start with an open
bracket, indicate the earliest time that the action (or
proposition) can be executed (or achieved).

A eff: P, X
 dur: 1

B eff: Q, X
 dur: 2

a.) Action Definitions b.) Planning Graph

A[0

B[0

X[1

P[1

Q[2

X[2

Θ
Λ 3)

Figure 2: A simple domain that illustrates the need for
action/proposition mutexes. Bold lines denote mutexes
(regardless of type). Labels on mutexes denote the con-
ditions when the mutex holds. The 1 signi�es that X
and :X are eternally mutex. A is cmutex with Q when
� and B is cmutex with Q when �, where � = bA < [Q
and � = bB < [P .

4 Generalized Mutex Reasoning
This section generalizes the Graphplan mutex rules in
two ways: 1) by introducing action/proposition mutexes
(in addition to the original mutexes between pairs of
actions or between pairs of propositions), and 2) by dis-
tinguishing between mutex relations that are eternally
present and those that are conditional and may expire
as the graph is expanded further in time. We motivate
these enhancements with the example of Figure 2. Be-
cause actions A and B produce X and :X respectively,
they can never be executed at the same time. (We for-
malize this notion below as an eternal mutex, and depict
it as a mutex with 1 label in the planning graph.) The
only way to achieve both P and Q is to execute A and
B in series (the order doesn't matter), so the mutex be-
tween P and Q should end at time 3. But standard
Graphplan mutex propagation is insu�cient for deduc-
ing this fact.
The problem stems from the fact that actions have dif-

fering durations. While the original Graphplan approach
works when proposition and action levels alternate in
a regular fashion, actions with varying durations break
this symmetry. For example, even if P is made true
early and persists to time 2, the action making Q true
may span backwards far enough to overlap the source of
P ; and, indeed, if B overlaps A there is a conict.
We repair this reasoning limitation by introducing the

notion of an action/proposition mutex. Note that in the

previous example, it is impossible to have proposition
P true and have an instance of action B under execu-
tion at time 2 if B started execution before P became
true. Intuitively, action/proposition mutexes help de-
duce more inconsistencies because they better connect
action/action mutexes to proposition/proposition mu-
texes in cases where action executions overlap. We now
make these notions precise.

We partition all mutex relations (action/action,
proposition/proposition, and action/proposition) into
eternal and conditional types for e�ciency purposes. In-
tuitively, an eternal mutex unconditionally persists for
all time, while a conditional mutex might not always
hold. Formally, we say that

Def 1. Propositions P and Q are eternally mutex
(emutex) i� P is the negation of Q.

Def 2. Action A is emutex with proposition P if :P
is a precondition or e�ect of A, or if P is an e�ect of A.

Def 3. Action A is emutex with action B i� at least
one of the following holds: 1) A or B deletes the pre-
conditions or e�ects of the other, or 2) A and B have
emutex preconditions.

In contrast to emutex, a conditional mutex may be
transitory, applying early on but expiring later due to
additional support for a proposition. Typically, the con-
ditions governing when a cmutex applies are inequalities
referring to:

� The duration of an action, which we write: jAj

� The time when an action (or proposition) �rst ap-
pears in the planning graph: [A

� The earliest possible end time of an action: A]

� The time when an action instance starts executing,
bA, or a proposition actually becomes true: bP

� The completion time of an action instance: Ae.

Note that A] = [A + jAj, that Ae = bA + jAj, and
that [A � bA. We now state three de�nitions, pertain-
ing to proposition/proposition, action/proposition, and
action/action pairs.

Loosely speaking, propositions P and Q are cmutex
when P is cmutex with all of the actions supporting Q
and also vice versa. The inqualities in the formalism
below ensure that an action is counted as support only
when it ends before the proposition starts.

Def 4. Let P and Q be two propositions. For each Ai
supporting P let �i be the condition under which Ai is
mutex with Q (true if eternally mutex, false if no mutex,
and � if Ai is cmutex with Q when �). For each Bj
supporting Q let 	j be the condition under which Bj is
mutex with P .

Let � =
V
i(�i_(Ai] > bP))^

V
j(j_(Bj] > bQ)): If � is

satis�able, then propositions P and Q are conditionally
mutex (cmutex) when �.

Intuitively action A is cmutex with proposition P
when P is cmutex with any precondition of A or when
A is cmutex with all of the actions supporting P .

Def 5. Let A be an action and P be a proposition.
For each precondition Qi of A, let �i be the condition
under which P is mutex with Qi (true if emutex, . . .).
For each action Bj possibly supporting P , let 	j be the
condition under which A is mutex with Bj .

Let � = (
W
i �i) _

�V
j(j _ (Bj] > bP))

�
^ (bA < [P).

If � is satis�able, then action A and proposition P are
cmutex when �.

Loosely speaking, actions A and B are cmutex when
A is cmutex with any precondition of B or vice versa.

Def 6. Let A and B be two actions which are not
emutex. For each precondition Pi of B, let �i be the
condition under which A is mutex with Pi. For each pre-
condition Qj of A, let 	j be the condition under which
B is mutex with Qj . Let � =

W
i�i _

W
j 	j . If � is

satis�able, then actions A and B are cmutex when �.

To see how these rules work, consider the example
of Figure 2. Def 1 shows that X is emutex with :X.
Def 5 further concludes that A is cmutex with Q when
bA < [Q, i.e. bA < 2; also that B is cmutex with P when
bB < [P , i.e. bB < 1. Intuitively, this makes sense |
if A starts before 2, then it must overlap support for Q
(i.e., action B), but A and B are emutex. Finally, Def
4 shows that propositions P and Q are cmutex when
(bA < 2) ^ (bB < 1). Adding the action durations to
both sides of each inequality yields the following P=Q
condition: (Ae < 3) ^ (Be < 3). Thus we conclude that
P and Q are cmutex when (bP < 3)^ (bQ < 3), and this
simple, symmetric condition is equivalent to a standard
Graphplan proposition mutex that expires at time 3.

In bigger examples, the situation gets more compli-
cated and asymmetric. Being able to quickly manipulate
and simplify the cmutex conditions is a necessary ability
for doing mutex reasoning with actions of varying du-
ration. In Section 7, we describe a canonical form for
these asymmetric conditions and explain how to quickly
manipulate the conditions. In section 8, we present em-
pirical evidence that mutex reasoning (while complex)
yields important speedup.

5 Incremental Graph Expansion

Using the compact representation described above it is
possible to update the planning graph in an incremental
fashion. More precisely, the planner can keep track of
what has changed in the graph, and only examine those
propositions, actions and mutex relationships that can
be a�ected by the changes. In particular:

� Adding a proposition node to the graph (e.g., as
the novel e�ect of a newly added action) can result
in new actions (i.e., those with the proposition as
precondition) being added.

� Adding an action to the graph can cause new propo-
sitions (the action's e�ects) to be added, and/or can
provide additional support for existing propositions.
This new support can cause an action/proposition
cmutex to terminate (by Def 5).

New
Prop

New
Action

New
Support End A/P

MutexEnd P/P
Mutex

End A/A
Mutex

Figure 3: The tgp algorithm uses this causation dia-
gram to guide its processing of events. Dark lines denote
e�ects that occur later in time (i.e., after an action exe-
cution).

� Terminating a cmutex between propositions P and
Q can result in new actions (e.g., actions with both
P and Q as preconditions). In addition, it can cause
an action/proposition cmutex to end (by Def 5),
e.g., between P and a consumer, C, of Q.

� Terminating a cmutex between action A and propo-
sition P can cause a proposition/proposition cmu-
tex to terminate (by Def 4), e.g., between P and
an e�ect, R, of A. In addition, it can cause an ac-
tion/action cmutex to terminate (by Def 6), e.g.,
between A and a consumer, C, of P .

� Terminating a cmutex between actions A and B can
cause an action/proposition cmutex to end (by Def
5), e.g., between A and an e�ect, R, of B.

These relationships are illustrated in the causation di-
agram of Figure 3. This diagram shows the structure of
an incremental approach to graph expansion which pro-
vides speed gains proportional to the space reductions
a�orded by the compact representation.
Although the detailed bookkeeping is surprisingly

complex, the basic tgp expansion algorithm is straight-
forward. Starting at time 0, it moves incrementally for-
ward in time, progressively taking care of new propo-
sitions, new actions, new support for existing proposi-
tions and terminated mutexes. Persistence actions are
not added explicitly. tgp keeps two main time-ordered
priority queues, NewSupp and EndPPMutex. NewSupp

contains triples hA;P; ti meaning proposition P has
new support from action A at time t, and EndPPMutex

contains pairs hM; ti meaning that M is a proposi-
tion/proposition cmutex that ended at time t. For ef-
�ciency, tgp also keeps a temporary list: NewProps is
the subset of propositions mentioned in NewSupp that
are new (i.e., have no prior support).
Given a temporal planning problem (i.e., a set of

initial conditions, list of conjunctive goals, and set of
ground actions), tgp graph expansion follows a loop
with the following steps:

1. Add new actions and their e�ects to the graph.
Note: tgp need only consider actions with a pre-
condition in NewProps, or with two preconditions
whose cmutex is in EndPPMutex. (At time zero, the
initial conditions are added by a special instance of
this step).

2. Add eternal and conditional mutex relationships for
new actions; this includes both action/proposition
and action/action mutexes.

3. Increment time to the next interesting entry in the
NewSupp or EndPPMutex queues.

4. Recheck propositions with new support, possi-
bly terminating (i.e., tightening the bound on)
action/proposition, action/action, and proposi-
tion/proposition cmutexes via a recursive algorithm
that traverses the causation diagram.

5. Add action/proposition and proposi-
tion/proposition mutexes (both eternal and
conditional) that involve new propositions.

6. If all goals are present in the graph, pairwise nonmu-
tex, then call solution extraction. Otherwise (and if
solution extraction fails) loop.

6 Solution Extraction
Once the planning graph has been extended to a time,
tG, when all goals are present and are pairwise non-
mutex, tgp performs a backward chaining search for
a working plan. This search is implemented using two
main data structures: Agenda, and Plan. Agenda is a
priority queue of hPi; tii pairs, where Pi is a (sub)goal
proposition and ti is the time by which the goal must be
true. Agenda is initialized by enqueuing hGi; tGi for each
top level goal Gi, and the queue is sorted in decreasing
temporal order. The second structure, Plan, which is
initialized empty, stores the plan under construction as
a set of hAi; sii pairs, where si is the start time for action
Ai. Persistence actions for a goal, denoted persist-G,
are considered explicitly since they were not added dur-
ing incremental graph expansion. The tgp solution ex-
traction loop performs the following steps while Agenda
is nonempty:

1. Dequeue hG; ti from Agenda.

2. If t = 0 and G 6= initially true, then fail (backtrack).
If t > 0 then let S equal the set of actions, fAig,
such that each Ai has G as an e�ect and Ai] � t.

3. Choose A from S [fpersist-Gg such that A isn't
mutex with any action in Plan. Add hA; t� jAji
to Plan, and for each precondition P of A, add
hP; t� jAji to Agenda. If no such A exists, back-
track. All such consistent A's must be considered
for completeness.1

In essence, persistence actions are really just place-
holders to ensure that tgp remembers to check all rel-
evant action/proposition mutexes. Unfortunately, the
presence of persistence actions adds redundancy to the
space of plans, and this can lead to increased search. For
a simple example of this, consider the domain of Figure 1
and suppose that the goal is to achieve both P and Q.
The shortest plan involves executing actions A and B
and requires two units of time. It should also be clear
that A could start execution at any time in the interval
[0; 1]. But tgp should not consider all such times, for

1If A is the special \persist-G" action, let jAj equal the
greatest common divisor of the durations of the set of actions,
and test for mutexes with proposition G.

there is an uncountable number; indeed, the algorithm
above restricts attention to start times which are an in-
tegral multiple of the greatest common divisor of the
set of action durations, and this does not compromise
completeness. For this example, the GCD restriction
translates into starting A at time 0 or at time 1.

But tgp applies the following even stronger,
completeness-preserving �lter: all actions are executed
as late as possible, unless this leads to a mutex incon-
sistency. Intuitively, one may think of this as de�ning
a canonical form for plans by taking a legal plan and
\tilting it" so that all actions \slide as far right" as
they can go without breaking plan correctness. This
completeness-preserving heuristic can be implemented
by refusing to choose A = persist-G to support subgoal
G (in step 3) unless all other choices are inconsistent.

7 Approximating Mutex Conditions

As we mentioned at the end of Section 4, simplifying
the logical and inequality formulae that bound the ap-
plicability of conditional mutexes is a key component of
temporal reasoning and a central aspect of the tgp algo-
rithm. Since these formulae can get arbitrarily complex,
we developed the asymmetric restricted form in an ef-
fort to keep the reasoning tractable. The asymmetric
form limits the mutex condition to a simple conjunction
of two inequalities, but allows for di�erent bounds in
each inequality. For example, X is mutex with Y when
(bX < tx) ^ (bY < ty). In contrast with the restrictive
symmetric form, when one plugs this representation into
Def 4, there is no loss of information. Unfortunately this
is not the case for Def 5 and 6. For example,

Def 6a (Asymmetric). Let A and B be two ac-
tions which are not emutex. For each precondition
Pi of B, let �i = (bA < tAi

) ^ (bPi < tPi
) be

the condition under which A is mutex with Pi. For
each precondition Qj of A, let 	j = (bB < tBj

) ^
(bQj < tQj

) be the condition under which B is mu-
tex with Qj . Let � = (

W
i(bA < tAi

) ^ (bB < tPi
)) _�W

j(bB < tBj
) ^ (bA < tQj

)
�
.

This condition does not simplify to the cannonical
asymmetric form because of the ^ inside the _. There
are several choices here for bounding approximations,
and two possibilities are:

� = (bA < min(tAi
; tQj

)) ^ (bB < max(tBj
; tPi

))

and

� = (bA < max(tAi
; tQj

)) ^ (bB < min(tBj
; tPi

))

In practice we do something slightly more sophisti-
cated by using the better of these max/min approxima-
tions on each successive pair of disjuncts. More precisely,
the binary disjunction

((bA < x1) ^ (bB < y1)) _ ((bA < x2) ^ (bB < y2))

becomes:

(bA < x1) ^ (bB < max(y1; y2)) if x1 = x2
(bA < x1) ^ (bB < y1) if x1 > x2
(bA < x2) ^ (bB < y2) otherwise

We note that this form gives an exact result except
in two cases, 1) when x1 < x2 ^ y1 > y2 and 2) x1 >
x2 ^ y1 < y2. In those two cases the result will be a
min/max approximation.
Def 5a (Asymmetric). Let A be an action and

P be a proposition. For each precondition Qi of A,
let �i = (bP < tPi

) ^ (bQi < tQi
) be the condi-

tion under which P is mutex with Qi. For each ac-
tion Bj possibly supporting P , let 	j = (bA < tAj

) ^
(bBj < tBj

) be the condition under which A is mu-
tex with Bj . Let � = (

W
i(bP < tPi

) ^ (bQi < tQi
)) _�V

j(bA < tAj
) ^ (bBj < tBj

) _ (Bj] > bP)
�
^ (bA < [P).

If � is satis�able, then action A and proposition P are
cmutex when �.
As before, this condition does not simplify to our can-

nonical form; there are several choices here for bounding
approximations, and one min/max argument leads to the
following:

� = (bP < min(tPi
; tBj

+ jBj j)) ^

(bA < max(tQi
;min([P; tAj

)))

Again, we improve on this equation by using the better
of this and a symmetric max/min approximation on each
successive pair of disjuncts.

8 Experimental Results
To date our implementation has been primarily used to
verify the correctness and completeness of the cmutex
rules; we have put little e�ort into code optimization. Di-
rect comparison between tgp and other temporal plan-
ning systems is di�cult for both availability and modu-
larity reasons (hsts [Muscettola, 1994], for example, is
part of a larger embedded system and requires inputs
which are radically di�erent from classical representa-
tion). Nevertheless, we plan to do direct comparison in
the immediate future.
In this section, we report on two experiments. First,

we compare the performance of tgp with that of
sgp [Weld, Anderson, & Smith, 1998] on plain strips

problems in order to see whether tgp's general, tempo-
ral framework comes at huge cost. Using a Power Mac
G3/400 running Macintosh Common Lisp 4.2 in 68mb
memory, we solved each problem ten times with sgp,
with full tgp, and also using tgp with cmutex reasoning
disabled. All runs were censored after 100 seconds, and
we averaged across each set of ten runs to reach a sin-
gle time for each problem/algorithm combination (Fig-
ure 4). tgp generally performs much better than sgp on
the harder logistics problems. sgp wins on Med-bw2 and
Big-bw2 which are dominated by solution extraction and
appear sensitive to goal ordering decisions therein. We
conjecture that sgp is faster at solution extraction either

Problem tgp No cmutex sgp

Med-bw1 0.108 0.032 0.090
Big-bw1 0.529 >100.000 0.451
Med-bw2 1.034 46.019 0.418
Big-bw2 20.953 >100.000 4.535
Simple-block-stack 0.012 0.005 0.028
Simple-block1 0.023 0.006 0.042
Simple-block2 0.139 0.221 0.189
Simple-block3 0.723 8.219 0.560
Fix-strips1 0.024 0.011 0.329
Fix-strips2 0.026 1.443 0.546
Fix-strips3 0.026 2.602 0.546
Fix-strips4 0.054 60.079 0.840
Att-log0 0.014 0.010 3.352
Att-log1 0.018 0.015 7.332
Att-log2 0.026 0.115 11.692
Att-log3 1.516 3.453 >100.000
Att-log4 1.516 >100.000 >100.000
Log01 3.415 >100.000 >100.000
Log02 1.568 >100.000 >100.000
Strips-log-y-1 1.203 >100.000 >100.000
Strips-log-y-2 11.760 >100.000 >100.000
Strips-log-y-3 6.009 >100.000 >100.000

Figure 4: tgp with both cmutex and emutex reasoning
beats emutex alone, and often beats sgp as well. Times
are in seconds.

due to reduced overhead when checking mutexes or be-
cause of sgp's use of dynamic variable ordering [Bacchus
& van Run, 1995].
In our second experiment we considered tgp's perfor-

mance on temporal planning problems, and again looked
at the contribution of asymmetric cmutex reasoning. In
the absence of a test suite of large temporal planning
problems, we took 30 strips problems (mostly from
ATT logistics domains); for each strips problem we
created 10 temporal problems by randomly assigning ac-
tions a duration from a normal distribution of integers
in the range [1; x]. We then ran full tgp as well as tgp
without cmutex reasoning on each of the resulting tem-
poral planning problems, censoring after 100 seconds and
averaging the results. We repeated this procedure for
x = 2; 4; and 8. Figure 5 displays the results | clearly,
cmutex reasoning provides a substantial gain in perfor-
mance, especially for di�cult problems.
We also note that tgp can handle relatively complex

problems: e.g., the solution to Log-4 is a 14-action plan;
with emutex and cmutex reasoning combined, generation
of the plan takes about 1:5 seconds on average.

9 Exogenous Events & Time Windows
Thus far, our description of temporal planning has fo-
cussed on handling actions of extended duration, but
several other aspects are equally challenging. A gen-
eral temporal planner must also handle exogenous events
(e.g., a solar eclipse or orbit perigee) and temporally con-
strained goals (e.g., observations that must be performed
during a time window). This section explains how the
basic tgp algorithm can be extended with this function-
ality.
Suppose that as input the planning problem speci�ed

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Figure 5: Cmutex reasoning provides substantial
speedup on larger problems.

a set of hG; s; ei triples instead of a simple set of goals.
We wish the planner to ensure that goal G is true at
time t such that s � t � e. Handling this representation
requires only minor changes to graph expansion and so-
lution extraction. Graph expansion need never proceed
past the maximum of the goal's endpoints, and tgp can
claim failure without attempting solution extraction if
some goal fails to enter the planning graph by its end-
point. Solution extraction is modi�ed as follows:

1. Dequeue hG; s; ei from Agenda.
2. If e = 0 and G 6= initially true, then fail (backtrack).

If e > 0 then let S equal the set of actions, fAig,
such that each Ai has G as an e�ect and Ai] � e.

3. If s < e then add persist-G to S.
4. Choose A from S such that A isn't mutex with

any action in Plan. Add hA; e� jAji to Plan, and
for each precondition P of A, add hP; 0; e� jAji to
Agenda. If no such A exists, backtrack. All such
consistent A's must be considered for completeness.

Note that this algorithm does not preclude G from
being made true earlier than s and then persisting into
the interval [s; e]. If one wishes to ensure that G is made
true during that interval, one must post h:G; 0; e� jAji
as a goal in step 4.
There are (at least) two ways to handle exogenous

events, and the �rst is simple. One can model exoge-
nous events with a partial plan. Each event de�nes a
special type of \action" with no preconditions but with
the event's e�ects. Of course the agent has no choice
about when these event \actions" are executed | these
times are speci�ed in the problem input. We denote the
resulting set of hE; ti pairs with the variable Events.
The following simplistic approach to graph expansion
now su�ces. During the normal process of expanding
the planning graph, whenever the time is incremented
to the starting time of an event E its e�ects are added
into the graph. Similarly, solution extraction only re-
quires minor modi�cation: instead of initializing Plan

to the empty set, it is initialized to equal Events. Nor-
mal mutex reasoning now ensures that the events will be
dealt with correctly.
While correct, this approach is simplistic in its treat-

ment of recurring events (e.g., cyclic periods of blocked
communications due to satelite orbits). Instead of stor-
ing a single time label on each proposition (and action
and mutex) node in the planning graph, one should store
a set of time intervals that dictate the times when the
proposition is possibly achieveable. As we envision these
extensions, the two level plan graph starts to look very
much like a temporal CSP network, in which proposi-
tions, actions and mutexes \come and go," i.e. are ac-
tive according to sets of allowed time windows. Unfor-
tunately, e�cient techniques like arc-consistency are not
powerful enough to derive and propagate mutex rela-
tionships. For this, k-consistency is required. However,
experience shows that general k-consistency reasoning
is too unfocused to be practical. Mutex reasoning is a
highly-focused form of k-consistency, and we believe it
will prove quite valuable in more general temporal plan-
ning problems. Extending these techniques to a general
temporal CSP is something we have just begun to inves-
tigate.

10 Related Work & Discussion
There is a long history of research on temporal plan-
ning, but few systems have seen wide use, presumably
due to performance limitations. Deviser [Vere, 1983] is
an early temporal planner which required a library of
HTN schemata and numerous domain-speci�c heuristics.
FORBIN [Dean, Firby, & Miller, 1988] combined HTN
reduction and temporal projection to tackle a similar
problem, but the system ran on only a few examples.
IxTeT [Ghallab & Laruelle, 1994] is a more recent HTN-
decomposition temporal planner. Allen et al. devel-
oped several elegant temporal planners based on tempo-
ral logic [Allen & Koomen, 1983; Pelavin & Allen, 1987;
Allen, 1991], but none supported metric durations. The
Zeno planner [Penberthy & Weld, 1994] used an in-
cremental Simplex algorithm to support actions with
metric durations and continuous change, but perfor-
mance was lacking | tgp is orders of magnitude faster.
HSTS [Muscettola, 1994] plans using a dynamic, tempo-
ral CSP. When the planner commits to an action, new
nodes are added to the CSP corresponding to the action's
start and end. Constraints are then added between the
various time points in the CSP to specify action duration
and to enforce precondition and e�ect constraints for the
action. Since the result is a simple temporal network,
arc-consistency is su�cient to determine overall consis-
tency [Dechter, Meiri, & Pearl, 1991]. HSTS does not
do any form of reachability analysis or mutual exclusion
reasoning | it must commit to a particular action or
event before it can do any reasoning about consistency.
Although it does not handle actions of varying duration,
STAN uses an independently developed representation
akin to our compact planning graph [Long & Fox, 1999].

We now discuss a method for extending Graphplan
to handle temporal actions without new mutex rules
or our compact planning-graph representation. Instead,
macro-expand each action in the domain into a number
of atomic pieces, each the length of the GCD of the set
of action durations, and each a regular strips action.
This compilation is a bit tricky since it needs to gener-
ate new propositions and add them as preconditions and
e�ects of the di�erent pieces in order to ensure that the
pieces sequence properly and that two actions don't in-
tercalate inappropriately. Unfortunately, this approach
would vastly expand the size of the domain theory, if the
ratio of the GCD of action durations is small relative to
the longest action | which is inevitable if there is wide
variation in action durations.

11 Conclusions
This paper makes several contributions:

� We describe tgp, a fast planner that handles
temporally-extended actions.

� tgp incrementally generates a compact planning
graph representation.

� The key to tgp's performance is a novel form of
reachability analysis for actions with varying dura-
tion. We distinguish conditional and eternal mu-
texes, and introduce action/proposition mutexes.

� We present experiments demonstrating the power
of conditional mutex reasoning with an asymmetric
condition representation.

� We explain how to extend tgp to handle exogenous
events and goals that must be achieved during cer-
tain time windows.

We believe that the ideas introduced here can be ex-
tended to deal with a richer temporal language that al-
lows: (1) for action preconditions which need not hold
throughout execution (i.e., \trigger" preconditions as
well as \maintenance" preconditions), (2) for e�ects that
become true during the action (instead of just at the
end), and (3) temporary e�ects of actions (e.g., inex-
haustible resource usage). In section 9 we discuss meth-
ods for handling (4) exogenous events, and (5) time win-
dows on goals and actions (e.g., for modeling scienti�c
experiments or astronomical observations), and we wish
to experiment with the e�ciency of these approaches.
Yet, even without considering increased action expres-
siveness there are algorithm improvements to be made.
Recall that during the backward chaining solution ex-
traction phase, if a plan is not found then tgp initiates
another search starting from a time which is a single
GCD increment later. A more sophisticated approach
would analyze the memoized nogoods and calculate the
next time point when a nogood might vanish and start
solution extraction there.

References
[Allen & Koomen, 1983] Allen, J., and Koomen, J. 1983.
Planning using a temporal world model. In Proceedings

of the Eighth International Joint Conference on Arti�cial
Intelligence, 741{747.

[Allen, 1991] Allen, J. 1991. Planning as temporal reasoning.
In Proc. Conf. Knowledge Representation and Reasoning,
3{14.

[Bacchus & van Run, 1995] Bacchus, F., and van Run, P.
1995. Dynamic variable ordering in csps. In Proceedings
of the 1995 conference on Principles and Practice of Con-
straint Programming, 258{275.

[Blum & Furst, 1995] Blum, A., and Furst, M. 1995. Fast
planning through planning graph analysis. In Proceedings
of the Fourteenth International Joint Conference on Arti�-
cial Intelligence, 1636{1642. San Francisco, Calif.: Morgan
Kaufmann.

[Blum & Furst, 1997] Blum, A., and Furst, M. 1997. Fast
planning through planning graph analysis. Arti�cial Intel-
ligence 90(1{2):281{300.

[Dean, Firby, & Miller, 1988] Dean, T., Firby, J., and Miller,
D. 1988. Hierarchical planning involving deadlines, travel
times, and resources. Computational Intelligence 4(4):381{
398.

[Dechter, Meiri, & Pearl, 1991] Dechter, R., Meiri, I., and
Pearl, J. 1991. Temporal constraint networks. Arti�cial
Intelligence 49:61{96.

[Ghallab & Laruelle, 1994] Ghallab, M., and Laruelle, H.
1994. Representation and control in IxTeT, a Temporal
Planner. In Proceedings of the Second International Con-
ference on Arti�cial Intelligence Planning Systems, 61{67.
Menlo Park, Calif.: AAAI Press.

[Koehler et al., 1997] Koehler, J., Nebel, B., Ho�mann, J.,
and Dimopoulos, Y. 1997. Extending planning graphs
to an ADL subset. In Proceedings of the Fourth Euro-
pean Conference on Planning, 273{285. Berlin, Germany:
Springer-Verlag.

[Long & Fox, 1999] Long, D., and Fox, M. 1999. The e�-
cient implementation of the plan graph in STAN. J. Arti-
�cial Intelligence Research 10.

[Muscettola, 1994] Muscettola, N. 1994. HSTS: integrating
planning and scheduling. In Zweben, M., and Fox, M.,
eds., Intelligent Scheduling. Morgan Kaufmann.

[Pelavin & Allen, 1987] Pelavin, R., and Allen, J. 1987. A
model for concurrent actions having temporal extent. In
Proceedings of the Sixth National Conference on Arti�cial
Intelligence, 246{250.

[Penberthy & Weld, 1994] Penberthy, J., and Weld, D. 1994.
Temporal planning with continuous change. In Proceedings
of the Twelfth National Conference on Arti�cial Intelli-
gence. Menlo Park, Calif.: AAAI Press.

[Vere, 1983] Vere, S. 1983. Planning in time: Windows and
durations for activities and goals. IEEE Trans. on Pattern
Analysis and Machine Intelligence 5:246{267.

[Weld, Anderson, & Smith, 1998] Weld, D. S., Anderson,
C. R., and Smith, D. E. 1998. Extending graphplan to
handle uncertainty and sensing actions. In Proceedings
of the Fifteenth National Conference on Arti�cial Intel-
ligence, 897{904. Menlo Park, Calif.: AAAI Press.

